A Parallel Extension for Existing Relational Database Management Systems

Matthieu Exbrayat
LISI- INSA Lyon
20, av. A.Einstein
F-69621 Villeurbanne Cedex
Tel : +33 04-72-43-89-83
Fax: +33 04-72-43-85-97
E-mail . exbrayat@lisiflory.insa-lyon.fr

Abstract

The considerable growth o online document
searching and consulting brings much o the data
providers to reoonsider their database management
systems (DBMS) capecities. Parallel DBMS then appear
as a good solution, but the involved changs in
administration anctostlimit their breakthrough.

To overcome these drawbacks, we propose an hybrid
structure, which adafis a parallel exensionto anexsting
DBMS. This exension cuts doamn the amount of work of
the sequential DBMS by parallelizng the incoming
gueries over a network of workstations. To allow this
parallel exeation, data are replicated over the stations
according to aspedfic strategy. We describe this strategy
andthen examine thparallel queryoptimization.

Keywords : Parallelism, Networks of Workstations,
RelationalDatabases.

1. Introduction

Thelast ten years have withessed the arising of parall e
techniques into Database Management Systems (DBMS),
in order to provide quick accessto large and very large
databases to many simultaneous users. Two domains are
espedally concened : Online Transaction Processng
(OLTP, i.e. business databases) and Query Processng
(QP, i.e. data extraction), bath of which have spedfic
needs.

OLTP deals with fast and reliable updates, as it
involves undupicatable means, such as money, raw
materials, or plane tickets, while query processng deals
with high bandwidth and wide storage, as it is employed
on Dedsion Support Systems. Speed of updates, and time
in general, are less significant here, as the kind of

Harald Kosch
LIP - ENS Lyon
16, allée d'ltalie
F-69361 Lyon Cedex 07
Tel : +33 04-72-72-85-03
Fax: +33 04-72-72-80-80
E-mail . hkosch@lip.ens-lyon.fr

information is either getting slowly out of date (e.g. bodks
lists), or bringing few considerable incoherence (e.g.
statisticalstudies data).

Many studies have been carried out in the context of
OLTP or QP. The main topics are data fragmentation
[1,2], Pardlel Exeaution Plans [3,4], and dugication
strategies [5].

Most of the work done was built on the assumption that
paraldd DBMS would run on Massvely Parald
Machines (MPM). Such machines, while causing an
incomparable rise of performance, are still quite few, and
represent a big investment. This made hybrid
architedures, such as workstation clusters, or networks of
workstations come to the front page of research [6,7].
More than suggestive aspeds, such as global cost, it can
be considered that workstations are widely used by many
companies. They provide a satisfying robust and
extensible computing power compared to most paralld
machines on the market. This alows us to believe that
virtual paralldism between smal- to middesize
computers is @aromisingdomain of investigation.

In this paper, we consider a different approach of
parallel databases, which is oriented towards Query
Processing (and more spedfically toward document
databases), and based on an original architedure. Our
goal is not to build ancther paralled DBMS, but to create
an extension, conneded to an existing sequential DBMS.
This means that we don't lodk at terabyte databases, but at
overloaded DBMS which manage some gigabytes or tens
of gigabytes databases. The system we designed appears
to be hybrid in at least two ways. firstly by using a
network of workstation, sewndly by regycling and
integrating arexisting DBMS.

We present in sedion 2 our DBMS structure. Sedion 3
describes how we adapt SQL queries to the structure. In
Sedion 4 we detail the data digtribution. In sedion 5 the

www.manaraa.com

query exeadtion parall elizer is presented, and in sedion 6
we compareur proposalwith relatedwork.

2. Description of theextended DBMS

Our system has four main components (seeFigure 1)
The first two are the dients and the existing DBMS
(EDBMS). This latter is not modified, and the only
modification that clients must perform istheir connedion
point. The other two components are spedfic to our
system. They are i) the so-called server, which interfaces
the EDBMS with its clients, and allows a parald
exeaution by catching and transforming queries into a
parald form, and ii) the so-called calculators, which run
on the nodes (workstations) of the LAN. Each calculator
stores database fragments, and exeautes queries over these
fragments. While systems asin [8] propose to get multiple
virtual procesors over each node, we propose to get only
one calculator per station. Thisis driven by the fact that
this limits the volume of the fragmentation dictionnary,
andthenallows alighter distribution management.

AN

Calculator 1 Calculator n

EDBMS

..

Figure 1: The extended DBMSStruture

3. Catching and parallelizing queries

Queries are caught by changing the conneding point of
applications to our extension. This allows us to examine
each query in order to paralelize it when it seans
posshble (seesedion 0). With no parall €lism needed, the
SQL query is ent to the EDBMS, then results are
returned to the server (see Figure 2) and back to the
client. No paradleism is achieved whether if some
concerned tables have not been distributed, or if the
EDBMS level of useisdightly light, or if the "query” isa
transaction. In case of pardl€izdion, the parald
exeadtion plan, or PEP (seesedion 5) is transformed into

exeaution parameters destinated to the calculators. Each
of these contains bath exeaution and re-fragmentation
information. This facilitates coarse-grained (bucket by
bucket) pipelined transmisgon of matching tuples within
a single ingtruction. The instruction structure is common
to unary (seledion, projedion) and binary (such as joins)
operations, in order to diredly put the PEP eements into
instructions andendthem.

Clients
A
Queries !
and answers
Interface Manager ¢ - - ----------~
Updetes
SQL Queries (Parallel Query e
Interpreter Optimizer] » EDBMS
=4 L3 Al
rep Aad /Disribution
Infos Infos
— X ¥
Paralld Load Distribution .
Execution Manager Manager e -
Manager
AN Y " v
Ta v x
Calculators

Figure 2 : The modules of the server

4. Distribution of data

4.1 Calculators

Machines where calculators should be placed are
chosen according to their level of use, which is
determined among disk avail ability, memory avail ability,
disk accesses anzpu use [9,10].

Server
A
v
Interface
Instructi on/ w‘ta
Exeaution Data Storage

Figure 3 : The modules of acalculator

www.manaraa.com

During use, availability is controlled by regularly
scanning the workstations level of use. To be more
predse, calculators are composed of three elements (see
Figure 3): i) an interface that gets data and instructions,
and sends results to the server or to another calculator
(intermediate results). Under this interface, we have two
elements, ii) a storage unit and iii) a query exeaition urit,
which communicate through message passng and shared
memory.

4.2 Dataelements

Each fragment is divided into buckets. These are
transfer-oriented buckets, in the way that thelr size
depends on transfer efficiency criteria rather than
avail able memory criteria. Despite the machines diversity,
we have chosen to use physically equal-sized buckets.
First of all, this limits data transfer preparation as buckets
do not neel to be re-sized. This then alows a good
effediveness of sub-queries, as buckets are considered as
the atomic data transfer volume. Bucket is the parall €lism
grain, and load-balancing is then made possble with a
quick control over the number of already tested buckets.
As a counterpoint, we can possbly mee quite empty
buckets resulting of an intermediate operation. Buckets
sizeis important as it influences the number of messages
going acaossthe LAN. To sum up, buckets must be big
enough to limit transfers, and small enough to be
generally full. Let us describe how we choose the bucket
size in aconcrete situation.

1.2

0.8 +

0.6

0.4

— Ethernet
ATM

0.2 +

Accessible throughput (MB/sec)

0

I I I I I I
f f f f f f

— o o o o o o o o o

- N ™ < o © N~ [ee] o]

Size of buckets (kB)

Figure 4 : Observedthroughput in a point-to-point
data transfer

This example is conducted over two sparc 5
workstations, both conneded to ethernet and ATM
networks. Communication bedween machines is asaured

by pvm. We use a ping-pong algorithm to get a
"pack+transfer+unpack” time. On ancther side, we used a
small algorithm derived from the first one, which gives a
"pack+unpack” time. Merging the two results, we
obtained the transfer time, the visible throughput (in a
point-to-point transfer) of the LAN (seeFigure 4), and the
percent of global transfer time spent in packing and
unpacking datéseeFigureb).

Concerning the throughput, we notice that the optimal
size of bucket is greater or equal to 3 kilobytes. Beyond
thissize, the LAN throughput stays quite stable at about 1
Megabyte per second for the ATM network, and 0.6
Megabyte per seoond for the ethernet network. We
interpret this low values as the result low-level overcosts.
They just traduce the point-to-point throughput, and not
the maximal capacity of the LAN. Lodking at Figure 5,
we notice that the "packing percentage” grows with the
bucket size from 2 percent (size=512 kB) to 8 to 10
percent when the size is over 30 kB. The optimal bucket
size is then between 3 kB and 30 kB. We loose
throughput under 3 kB, and over 30 kB the packing time
bemmes too important compared to the transfer time. As
a satisfyingsize,we can use 2@&ilobyte buckets.

10 +

Percentage of time (%)

% time pack : ATM

% time pack : Ethernet

I I I
T T T
[*2] (2] (2]
© N~ [¢e]

0
10 +
20 +

o o (@] 2]
™ < wn Yo
Size of buckets (kB)

Figure 5 : Percentage of globatransfer time spent in
packing andunpacking data

4.3 Distribution strategy

Some factors can limit the global space available for
data distribution.We can be faced with a lack of resources
in a dedicated environment, or a user-limited avail ability
in a non-dedicated environment, bath in terms of disk
space (dired impact) and in terms of cpu-time, that is to
say in the amount of data that can be processed, and so
stored, on one ste (indired impact).In this omnd case
we are driven to such considerations as the "social

www.manaraa.com

contract" described by [11], that is to say, how much we
caninterferwith theworkstationsbwn work.

When meding these limits, we must apply a partia
distribution strategy. We propose the foll owing heuristic,
based on queries frequency statistics, which can ether be
statically obtained from the treatment model, in case of a
transaction processng application, or dynamicaly,
acoording to real use, in case of consultation applications.
We consider attributes frequencies rather than tables
frequencies as fragmentation is done according to
attributes.

Let us define Fu the frequency with which each
attribute of each reation is accessd for a single unary
query (i.e. seled, projed). We must then define Fc, the
frequency for multipleermsquery (joins select+joins...).

In the first step of our algorithm we dedde wether a
relation has to be distributed or not. This phase can be
divided intwo sub-steps:

1.We diminate tables where no attribute has a
sufficient Fc regarding the mean value among all
attributes. Let usall Dc thelist of kept relations.

2We can anyway choose to keg some reations
eliminated in 1) where one or severa of the most oftenly
used seledion attributes (i.e. looking at their Fu) are no
indexed attributes. Let us call Du the list of the relations
kept inthis step.

Agressyvity of this heuristic can be adapted in point 1
depending on the avail able volume and in point 2 when
multi-termsqueries aréavoured.

In a second step, we can cut some attributes from the
distributed tables, making a kind of vertica
fragmentation. To choose between attributes, we must
onceagain have a loo&ttheir frequencies:

1.Concerning tables in Dc, we can diminate attributes
which have a small Fc and do not participate in joins (we
must note that this can arise after supressng tablesin the
first step).

2.Concerning tables in Du, we just have to look at Fu,
as these tables were not kept according to their joins
frequency.

We must limit the agressvity of this smnd step, as
each attribute suppresson tends to limit the number of
parallelizablequeries.

If data volume remained too high, we should have to
apply the heuristic once or more than once with an
increasedgressivity in thédirst step.

Let us describe an exemple of the use of our heuristic.
To make understanding easier, keys are marked with a
star, and joins attributes have the same name. In the first
step (see Table 1), the mean Fc value FcM is 11. We
noticethat for relations R4 and R5, all attributes have low
Fc comparing with FcM. These two relations should be
eliminated. But, having a look at R5, we notice that
Fu(A8) > Fu(A2*) . Wethendecide tckeep R5.

Relations Attributes Fc Fu
Al* 15 8

R1 A2 10 6
A3 30 14

A4* 25 3

R2 A5 7 8
Al 12 15

AB* 13 3

R3 A7 11 5

A4 5 8

R4 A2* 3 6
A8 8 14

R5 A9* 4 7

A4 3 4

Table 1: Global Database Scheme

In the seond step (see Table 2), FcM is 12, and bath
Fc(R2.A5) and Fc(R3.A4) are very low compared to it.
We can then suppressthese two attributes. Looking at Du,
Fu(R4.A2*) is low comparing with Fu(R4.A8). We then
decide tosuppress R4.A2*.

Thereducedschemewe obtain ispresented iTable3.

Relations Attributes Fc Fu
Al* 15 8

R1 A2 10 6
A3 30 14

A4* 25 3

R2 A5 7 8
Al 12 15

A6* 13 3

R3 A7 11 5

A4 5 8

R4 A2* - 6
A8 - 14

Table 2 : Simplified databaseschemaafter tables
suppression

Relations R1 R2 R3 R4

Attributes |A1* [A2 [A3 [A4* [A1]|A6*[A7 |AS8

Table 3 : Simplified databaseschemaafter
attributes suppression

4.4 Description of distribution tasks

Original distribution is done at launch time (before
users connedions are al owed). The distribution manager
extracts and sends data on all avail able calculators. Those
are then asked to exeaute fragmentation queries.
Exeaution isdivided in two steps, i) seled all tuplesin the

www.manaraa.com

concerned fragment and ii) fragment these pseudo-results
according to theefinitive fragmentatiowriteria.

In case of a transaction, the corresponding query is
diredly sent to the EDBMS. This means that data
coherency and consistency is guaranted by the EDBMS.
In case of commit, the interface managr ask the
distribution manager to ched if digtributed deta have
bemme out of date. Added, modified, or suppressed tuples
are then communicated to the Distribution Manager,
which informs the concerned calculators that they must
add, change or suppressone or more tuples. In case of
suppresson, concerned buckets only become lighter. In
case of addition, a new bucket can be created if all
existing ones are full. We must notice that our system is
dedicated to Query Processing. Temporary inconsistency
can appear bedwen data stored on the EDBMS and
distributed data, due to the fact that a updates can be
delaied on the tations. As coherency must be kept during
updates, the current version of our prototype locks the
whole distributed data during updates. This method is
rather slow, and restricts most of updates to slack periods.
This points out the fact that our approach cannot, until
now, support intensive transaction management, but well
fits for document search or dedsion supports, as this
domainscantoleratedelaiedupdates.

Some danges in the hardware (fluctuation of
machines avail ability, machines shutdown) or in the
database (deep changes in queries frequencies, numerous
updates bringing fragmentation skews) can bring the need
of a partial or total redistribution. Redistribution
tedhniques have long been discussed [12,8,13] and do not
neel to be rediscussed here. The important point is how to
get data to their new site. As long as database changes do
not impose modifications in the list of distributed tables,
redistribution is done by sending fragmentation queries as
described abowe. When hardware danges are
encountered, we must access the EDBMS to re-extract
concerned data. In case of range partitionning, we seled
and extract data from the EDBMS where values of the
partitionning attribute are between the two bounds of the
lost fragment. In case of hashing, it becwmes dightly
more difficult. We propose to extract the whole table
(except non-distributed attributes), to apply the hashing
function to each tuple, and then to send the matching one
(grouped into buckets) to their new site. If its cpuis free
enough, hashing and sending are done by the distribution
manager, otherwise, they are distributed among the
calculators. Until now, new dtes are determined
depending on the last fragmentation and according to disk
capacities [6]. Aslong as it remains posshle, we choose a
sitewhere no fragment of theoncerned relation stored.

5. Parallel query optimization

The parallel query optimizer implements a one-phase
randomized search strategy approach [14]. It is built upin
a strictmodularway, agdetailed inFigure®6.

First the transformation manager catches up the
optimal sequential exeadtion plan from the EDBMS. It
then applies a suite of local transformations to this plan,
in order tofind thebestparallelized plan [15].

Digtribution Load
Manager Manager
Initial plan
(best sequentia plan)
Transformed ’
plan Join XX
Parallelized gan - > >
Tranformation Ressource Match
+——— |Manager Allocation Optimizer
Allocation Best implementation
Plan Costs Join Cost

Figure 6 : The modules of the parallel query
optimizer

For each operation of the plan, the transformation
manager collaborates with the resource allocation
manager, which optimizes the I/0O, CPU and memory
consumption. Therefore, it determines a first set of
calculators having enough memory and CPU power to
exeate the operation. It then adapts thisinitial set to data
location, in order to save I/O and communication over-
costs.

At last, the resource managr cals the match
optimizer, which designs the best relation accessmethods,
i.e. the best implementation technique for the operation
(e.g.hash vaested-loogoin).

All required optimizaion informations are extracted
from the distribution manager, containing the actual
relation partitioning, and the load manager, which
presents the actual 1/0, CPU and memory consumption on
eachcalculator (see theserverscheme irFigure2)

The proposed architedure designs a highly extensible
approach to parale query optimizaion and fits
particularly well in with complex queries on a dedsion
support systems. Therefore it adapts perfedly to the
requirements of the overall system, exeaiting on the
calculators complex queries, which would otherwise have
overloaded the EDMS.

www.manaraa.com

6. Relatedwork

Clasdcdly, two approaches are presented in the
context of parallel databases development. In the first
approach, the paralle database is implemented from
scratch. In the seomnd, implementation is done by
paraldising an existing sequential DBMS. University
research groups are divided between these two schods.
DBS3 [16] and Gamma belong to the first category,
whereas Volcano [17], Midas [18] and XPRS [19]
integrateparallelismwithin anexisting DBMS.

Concerning industrial vendors, we mainly find the
seoond approach, like IBM products [20], Oracle [21],
and Informix [22]. Thisis not astonishing as the software
can be more quickly developed when aready running
codes could be reused. However the amount of work
neagled to achieve parale functionnalities remains
important. For example, the implementation of Volcano
took aboufive years.

Given the present context of concurrency and users
demand, the industry cannot afford such long
development delays. In such a scope we integrated our
parald extension as a whole component of the existing
DBMS. Interfacing is enabled by means of the avail able
input/output functions of this DBMS. Development costs
are deaeased and seaurity functionnalities, such as
backup and datecovering, areasilymaintained.

7. Conclusion and futurework

In this paper we described the architedure of a parall €
extenson for a sequentiad and relational database
management system built on a network of workstations,
oriented toward document databases and working under
relaxed update congraints. As described abowe,
developing time is drastically deaeased while using our
method, as we integrate as many existing elements as
posshle. We propose an partial data distribution strategy
to adapt distribution to the stations avail ability and to the
EDBMS levd of use. The parallel query optimizer and
the calculators have been developed, and are now tested
andevaluated.

Anyway, many points still remain to be developed.
First, we did not adressso far the server fail ure problems.
Aswe use asingle existing DBMS, we cannot provide the
seaurity system of a full parallel DBMS. We first propose
a bandwidth and a speed extension, not a searity
extension, and second we can trust the robustness of the
exiging system (lack of software failures, seaurity
copies...). To ensure seaurity and fastness of reaction in
case of an acddent, we plan to study and exploit
dugication posshilities. Finaly, we have to study and
integrate document databases spedficiti esinto our system,

by looking at the adequation of existing fragmentation
techniques tour needs.

We can conclude by underlining the fact that our
system, while originaly oriented toward overloaded
DBMS, could be used in other contexts. By example, it
could easily be turned into a federated DBMS: we can
sded interesting data from several databases, managed by
several DBMS, get them to our local area network, and
exploit them intensively with no dired connedion to their
original site.

References

[1] D.J. DeWitt and J. Gray. Parallel Database Systems :
the Future of High Performance Database Systems.
Communications of the AGN85(6):85-98,June 1992.

[2] R. Gallersdérfer and M. Nicola. Improving
Performance in Replicated Databases through Relaxed
Coherency. In Procealings of the 21% VLDB
ConferenceZurich, Switzerland, 1995.

[3] D. Scheider and D.J. DeWitt. A Performance
Evaluation of Four Paralel Algarithms in a Shared-
Nothing Multi processor Environment. In Procealings of
the ACM S GMOD Internationd Conference on
Management of Data, Portland, Oregon, USA, June
1989.

[4] W. Hasan and R. Motwani. Coloring away
Communication in Paralel Query Optimization. In
Procealings of 21% VLDB Conference, Zurich,
Switzerland, 1995.

[5] D. Chamberlin and F. Shmuck. Dynamic Data
Distribution (D3) in a Shared-Nothing Multi processor
Data Store. In Procealings of the 18" VLDB
Conference, Vancouver, British Columbia, Canada,
1992.

[6] L. Chen, D. Rotem and S. Seshadri. Declustering
Databases on Heterogeneous Disk Systems. In
Procealings of 21% VLDB Conference, Zurich,
Switzerland, 1995.

[7] X. Zhang and Y. Song. The Sate-of the-Art in
Performance Modeling and $mulation: Computer and
Communication Networks, chapter 4, An Integrated
Approach of Performance Prediction on Networks of
Workstations. K. Bagchi, J. Walrand and G. Zobricht,
Eds, Gordon andreach, 1996.

[8] D. Schneider et al. Practical Skew Handling in Parall el
Joins. In Procealings of the 18" VLDB Conference,
Vancouver British ColumbiaAugust 1992.

[9] F. Douglis and J. Ousterhout. Transparent Process
Migration: Design Alternatives and the Sprite
Implementation. Sdtware - Practice and Experience,
21(8):757-785, August 1991.

www.manaraa.com

(10

[11]

(12

(13

(14

(19

(16

(17

(18]

[19]

(20

[21]

(22

M. Mutka and M. Livny. The Available Capacity of a
Privately Owned Workstation Environment.
Performance Evaluatiqri2(4):269-284 July 1991.

R.H. Arpaci et al. The interaction d Paralld and
Sequential Workloads on a Network of Workstations.
CS-94-838, UC Berkeley, 1994.

G. Copeland and T. Keller. Data Placement in Bubba.
In Procealings of the ACM SSGMOD Conference, pp
99-108, Chicago, ILiMay 1988.

G. Graefe. Query Evaluation Techniques For Large
DatabasesACM ComputingSurveys, 2&), June 1993.

R.S.G. Lanzelotte, P. Valduriez and M. Zait.
Indwstrial Strength Parallel Query Optimization : Isues
and Lesons. Information Systems - An Internationd
Journal 1994.

L. Brunie and H. Kosch. Control Strategies for
Complex Relationna Query Processng in Shared
Nothing Systems. ACM SIGMOD Records, 25(3),
September 1996.

P.Valduriezz M. Couprie and B. Bergstein.
Prototyping DBS3, Shared-Memory Parallel Database
System. In Procealings of the 1% internationd
Conference on Paralld and Distributed Information
SystemsMiami Beach Florida,December 1991.

G. Graefe and D.L. Davison. Encapsulation of
Parall elism and Architecture Independance in Extensible
Database Query Processng. |EEE Transactions on
Software Engineerindl9(7),July 1993.

G. Bozas et al. On Transforming a Sequential SQL
DBMS into a Paralel One: First Results and
Experiences of the MIDAS Project. In LLNCS 1124
Springer,Eds, EUROPAR’96op 881-887August 1996.

W. Hong. Paralld Query Processng Using Shaed
Memory Multi processors and Disk Arrays. PhD Thesis,
University ofCalifornia, BerkeleyAugust 1992.

C.K. Baru et al. DB2 Parallel Edition. IBM Systems
Journal, 34(2), 1995.

B. Linder. Parallel Databases Processng in ORACLE.
In PDIS-93 San Diego, USA, 1993.

B. Gerber. Informix Ob Line XPS In Procealings of
the Internationad Conference on Management of Data,
ACM Sigmod Record, 1995.

www.manaraa.com

