
www.manaraa.com

A Parallel Extension for Existing Relational Database Management Systems

Matthieu Exbrayat
LISI- INSA Lyon
20, av. A. Einstein

F-69621 Villeurbanne Cedex
Tel : +33 04-72-43-89-83
Fax : +33 04-72-43-85-97

E-mail : exbrayat@lisiflory.insa-lyon.fr

Harald Kosch
LIP - ENS Lyon
16, allée d’Italie

F-69361 Lyon Cedex 07
Tel : +33 04-72-72-85-03
Fax : +33 04-72-72-80-80

E-mail : hkosch@lip.ens-lyon.fr

Abstract
The considerable growth of on-line document

searching and consulting brings much of the data
providers to reconsider their database management
systems (DBMS) capacities. Parallel DBMS then appear
as a good solution, but the involved changes in
administration and cost limit their breakthrough.

To overcome these drawbacks, we propose an hybrid
structure, which adapts a parallel extension to an existing
DBMS. This extension cuts down the amount of work of
the sequential DBMS, by paralleli zing the incoming
queries over a network of workstations. To allow this
parallel execution, data are repli cated over the stations
according to a specifi c strategy. We describe this strategy
and then examine the parallel query optimization.

Keywords : Paralleli sm, Networks of Workstations,
Relational Databases.

1. Introduction

The last ten years have witnessed the arising of parallel
techniques into Database Management Systems (DBMS),
in order to provide quick access to large and very large
databases to many simultaneous users. Two domains are
especiall y concerned : Online Transaction Processing
(OLTP, i.e. business databases) and Query Processing
(QP, i.e. data extraction), both of which have specific
needs.

OLTP deals with fast and reliable updates, as it
involves unduplicatable means, such as money, raw
materials, or plane tickets, while query processing deals
with high bandwidth and wide storage, as it is employed
on Decision Support Systems. Speed of updates, and time
in general, are less significant here, as the kind of

information is either getting slowly out of date (e.g. books
li sts), or bringing few considerable incoherence (e.g.
statistical studies data).

Many studies have been carried out in the context of
OLTP or QP. The main topics are data fragmentation
[1,2], Parallel Execution Plans [3,4], and duplication
strategies [5].

Most of the work done was built on the assumption that
parallel DBMS would run on Massively Parallel
Machines (MPM). Such machines, while causing an
incomparable rise of performance, are still quite few, and
represent a big investment. This made hybrid
architectures, such as workstation clusters, or networks of
workstations come to the front page of research [6,7].
More than suggestive aspects, such as global cost, it can
be considered that workstations are widely used by many
companies. They provide a satisfying robust and
extensible computing power compared to most parallel
machines on the market. This allows us to believe that
virtual paralleli sm between small - to middle-size
computers is a promising domain of investigation.

In this paper, we consider a different approach of
parallel databases, which is oriented towards Query
Processing (and more specificall y toward document
databases), and based on an original architecture. Our
goal is not to build another parallel DBMS, but to create
an extension, connected to an existing sequential DBMS.
This means that we don't look at terabyte databases, but at
overloaded DBMS which manage some gigabytes or tens
of gigabytes databases. The system we designed appears
to be hybrid in at least two ways: firstly by using a
network of workstation, secondly by recycling and
integrating an existing DBMS.

We present in section 2 our DBMS structure. Section 3
describes how we adapt SQL queries to the structure. In
Section 4 we detail the data distribution. In section 5 the
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query execution paralleli zer is presented, and in section 6
we compare our proposal with related work.

2. Description of the extended DBMS

Our system has four main components (see Figure 1 )
The first two are the clients and the existing DBMS
(EDBMS). This latter is not modified, and the only
modification that clients must perform is their connection
point. The other two components are specific to our
system. They are i) the so-called server, which interfaces
the EDBMS with its clients, and allows a parallel
execution by catching and transforming queries into a
parallel form, and ii ) the so-called calculators, which run
on the nodes (workstations) of the LAN. Each calculator
stores database fragments, and executes queries over these
fragments. While systems as in [8] propose to get multiple
virtual processors over each node, we propose to get only
one calculator per station. This is driven by the fact that
this limits the volume of the fragmentation dictionnary,
and then allows a lighter distribution management.

3. Catching and parallelizing queries

Queries are caught by changing the connecting point of
applications to our extension. This allows us to examine
each query in order to paralleli ze it when it seems
possible (see section 0). With no paralleli sm needed, the
SQL query is sent to the EDBMS, then results are
returned to the server (see Figure 2) and back to the
client. No paralleli sm is achieved whether if some
concerned tables have not been distributed, or if the
EDBMS level of use is slightly light, or if the "query" is a
transaction. In case of paralleli zation, the parallel
execution plan, or PEP (see section 5) is transformed into

execution parameters destinated to the calculators. Each
of these contains both execution and re-fragmentation
information. This facilit ates coarse-grained (bucket by
bucket) pipelined transmission of matching tuples within
a single instruction. The instruction structure is common
to unary (selection, projection) and binary (such as joins)
operations, in order to directly put the PEP elements into
instructions and send them.

4. Distribution of data

4.1 Calculators

Machines where calculators should be placed are
chosen according to their level of use, which is
determined among disk availabilit y, memory availabilit y,
disk accesses and cpu use [9,10].
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Figure 1 : The extended DBMS Struture
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During use, availabilit y is controlled by regularly
scanning the workstations' level of use. To be more
precise, calculators are composed of three elements (see
Figure 3): i) an interface, that gets data and instructions,
and sends results to the server or to another calculator
(intermediate results). Under this interface, we have two
elements, ii ) a storage unit and iii ) a query execution unit,
which communicate through message passing and shared
memory.

4.2 Data elements

Each fragment is divided into buckets. These are
transfer-oriented buckets, in the way that their size
depends on transfer eff iciency criteria rather than
available memory criteria. Despite the machines diversity,
we have chosen to use physicall y equal-sized buckets.
First of all , this limits data transfer preparation as buckets
do not need to be re-sized. This then allows a good
effectiveness of sub-queries, as buckets are considered as
the atomic data transfer volume. Bucket is the paralleli sm
grain, and load-balancing is then made possible with a
quick control over the number of already tested buckets.
As a counterpoint, we can possibly meet quite empty
buckets resulting of an intermediate operation. Buckets
size is important as it influences the number of messages
going accross the LAN. To sum up, buckets must be big
enough to limit transfers, and small enough to be
generall y full . Let us describe how we choose the bucket
size in a concrete situation.

This example is conducted over two sparc 5
workstations, both connected to ethernet and ATM
networks. Communication beetween machines is assured

by pvm. We use a ping-pong algorithm to get a
"pack+transfer+unpack" time. On another side, we used a
small algorithm derived from the first one, which gives a
"pack+unpack" time. Merging the two results, we
obtained the transfer time, the visible throughput (in a
point-to-point transfer) of the LAN (see Figure 4), and the
percent of global transfer time spent in packing and
unpacking data (see Figure 5).

Concerning the throughput, we notice that the optimal
size of bucket is greater or equal to 3 kilobytes. Beyond
this size, the LAN throughput stays quite stable at about 1
Megabyte per second for the ATM network, and 0.6
Megabyte per second for the ethernet network. We
interpret this low values as the result low-level overcosts.
They just traduce the point-to-point throughput, and not
the maximal capacity of the LAN. Looking at Figure 5,
we notice that the "packing percentage" grows with the
bucket size from 2 percent (size=512 kB) to 8 to 10
percent when the size is over 30 kB. The optimal bucket
size is then between 3 kB and 30 kB. We loose
throughput under 3 kB, and over 30 kB the packing time
becomes too important compared to the transfer time. As
a satisfying size, we can use 20 kilobyte buckets.

4.3 Distribution strategy

Some factors can limit the global space available for
data distribution.We can be faced with a lack of resources
in a dedicated environment, or a user-limited availabilit y
in a non-dedicated environment, both in terms of disk
space (direct impact) and in terms of cpu-time, that is to
say in the amount of data that can be processed, and so
stored, on one site (indirect impact).In this second case
we are driven to such considerations as the "social
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contract" described by [11], that is to say, how much we
can interfer with the workstations' own work.

When meeting these limits, we must apply a partial
distribution strategy. We propose the following heuristic,
based on queries frequency statistics, which can either be
staticall y obtained from the treatment model, in case of a
transaction processing application, or dynamically,
according to real use, in case of consultation applications.
We consider attributes frequencies rather than tables
frequencies as fragmentation is done according to
attributes.

Let us define Fu the frequency with which each
attribute of each relation is accessed for a single unary
query (i.e. select, project). We must then define Fc, the
frequency for multiple terms query (joins, select+joins...).

In the first step of our algorithm we decide wether a
relation has to be distributed or not. This phase can be
divided in two sub-steps:

1. We eliminate tables where no attribute has a
suff icient Fc regarding the mean value among all
attributes. Let us call Dc the list of kept relations.

2. We can anyway choose to keep some relations
eliminated in 1) where one or several of the most oftenly
used selection attributes (i.e. looking at their Fu) are no
indexed attributes. Let us call Du the li st of the relations
kept in this step.

Agressivity of this heuristic can be adapted in point 1
depending on the available volume and in point 2 when
multi-terms queries are favoured.

In a second step, we can cut some attributes from the
distributed tables, making a kind of vertical
fragmentation. To choose between attributes, we must
once again have a look at their frequencies:

1. Concerning tables in Dc, we can eliminate attributes
which have a small Fc and do not participate in joins (we
must note that this can arise after supressing tables in the
first step).

2. Concerning tables in Du, we just have to look at Fu,
as these tables were not kept according to their joins
frequency.

We must limit the agressivity of this second step, as
each attribute suppression tends to limit the number of
parallelizable queries.

If data volume remained too high, we should have to
apply the heuristic once or more than once with an
increased agressivity in the first step.

Let us describe an exemple of the use of our heuristic.
To make understanding easier, keys are marked with a
star, and joins attributes have the same name. In the first
step (see Table 1), the mean Fc value FcM is 11. We
notice that for relations R4 and R5, all attributes have low
Fc comparing with FcM. These two relations should be
eliminated. But, having a look at R5, we notice that
Fu(A8) > Fu(A2*) . We then decide to keep R5.

Relations Attributes Fc Fu
A1* 15 8

R1 A2 10 6
A3 30 14
A4* 25 3

R2 A5 7 8
A1 12 15
A6* 13 3

R3 A7 11 5
A4 5 8

R4 A2* 3 6
A8 8 14

R5 A9* 4 7
A4 3 4

Table 1: Global Database Scheme

In the second step (see Table 2), FcM is 12, and both
Fc(R2.A5) and Fc(R3.A4) are very low compared to it.
We can then suppress these two attributes. Looking at Du,
Fu(R4.A2*) is low comparing with Fu(R4.A8). We then
decide to suppress R4.A2*.

The reduced scheme we obtain is presented in Table 3.

Relations Attributes Fc Fu
A1* 15 8

R1 A2 10 6
A3 30 14
A4* 25 3

R2 A5 7 8
A1 12 15
A6* 13 3

R3 A7 11 5
A4 5 8

R4 A2* - 6
A8 - 14

Table 2 : Simplified database schema after tables
suppression

Relations R1 R2 R3 R4
Attributes A1* A2 A3 A4* A1 A6* A7 A8

Table 3 : Simplified database schema after
attributes suppression

4.4 Description of distribution tasks

Original distribution is done at launch time (before
users' connections are allowed). The distribution manager
extracts and sends data on all available calculators. Those
are then asked to execute fragmentation queries.
Execution is divided in two steps, i) select all tuples in the
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concerned fragment and ii ) fragment these pseudo-results
according to the definitive fragmentation criteria.

In case of a transaction, the corresponding query is
directly sent to the EDBMS. This means that data
coherency and consistency is guaranted by the EDBMS.
In case of commit, the interface manager ask the
distribution manager to check if distributed data have
become out of date. Added, modified, or suppressed tuples
are then communicated to the Distribution Manager,
which informs the concerned calculators that they must
add, change or suppress one or more tuples. In case of
suppression, concerned buckets only become lighter. In
case of addition, a new bucket can be created if all
existing ones are full . We must notice that our system is
dedicated to Query Processing. Temporary inconsistency
can appear beetwen data stored on the EDBMS and
distributed data, due to the fact that a updates can be
delaied on the stations. As coherency must be kept during
updates, the current version of our prototype locks the
whole distributed data during updates. This method is
rather slow, and restricts most of updates to slack periods.
This points out the fact that our approach cannot, until
now, support intensive transaction management, but well
fits for document search or decision supports, as this
domains can tolerate delaied updates.

Some changes in the hardware (fluctuation of
machines availabilit y, machines shutdown) or in the
database (deep changes in queries frequencies, numerous
updates bringing fragmentation skews) can bring the need
of a partial or total redistribution. Redistribution
techniques have long been discussed [12,8,13] and do not
need to be rediscussed here. The important point is how to
get data to their new site. As long as database changes do
not impose modifications in the li st of distributed tables,
redistribution is done by sending fragmentation queries as
described above. When hardware changes are
encountered, we must access the EDBMS to re-extract
concerned data. In case of range partitionning, we select
and extract data from the EDBMS where values of the
partitionning attribute are between the two bounds of the
lost fragment. In case of hashing, it becomes slightly
more diff icult. We propose to extract the whole table
(except non-distributed attributes), to apply the hashing
function to each tuple, and then to send the matching one
(grouped into buckets) to their new site. If its cpu is free
enough, hashing and sending are done by the distribution
manager, otherwise, they are distributed among the
calculators. Until now, new sites are determined
depending on the last fragmentation and according to disk
capacities [6]. As long as it remains possible, we choose a
site where no fragment of the concerned relation is stored.

5. Parallel query optimization

The parallel query optimizer implements a one-phase
randomized search strategy approach [14]. It is built up in
a strict modular way, as detailed in Figure 6.

First the transformation manager catches up the
optimal sequential execution plan from the EDBMS. It
then applies a suite of local transformations to this plan,
in order to find the best parallelized plan [15].

For each operation of the plan, the transformation
manager collaborates with the resource allocation
manager, which optimizes the I/O, CPU and memory
consumption. Therefore, it determines a first set of
calculators having enough memory and CPU power to
execute the operation. It then adapts this initial set to data
location, in order to save I/O and communication over-
costs.

At last, the resource manager call s the match
optimizer, which designs the best relation access methods,
i.e. the best implementation technique for the operation
(e.g. hash vs nested-loop join).

All required optimization informations are extracted
from the distribution manager, containing the actual
relation partitioning, and the load manager, which
presents the actual I/O, CPU and memory consumption on
each calculator (see the server scheme in Figure 2)

The proposed architecture designs a highly extensible
approach to parallel query optimization and fits
particularly well i n with complex queries on a decision
support systems. Therefore it adapts perfectly to the
requirements of the overall system, executing on the
calculators complex queries, which would otherwise have
overloaded the EDMS.

Initial plan
(best sequential plan)

Parallelized plan

Transformed
plan Join XX

Allocation
Plan Costs

Best implementation
Join Cost

Distribution
Manager

Load
Manager

Tranformation
Manager

Match
Optimizer

Ressource
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Figure 6 : The modules of the parallel query
optimizer
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6. Related work

Classicall y, two approaches are presented in the
context of parallel databases development. In the first
approach, the parallel database is implemented from
scratch. In the second, implementation is done by
paralleli sing an existing sequential DBMS. University
research groups are divided between these two schools.
DBS3 [16] and Gamma belong to the first category,
whereas Volcano [17], Midas [18] and XPRS [19]
integrate parallelism within an existing DBMS.

Concerning industrial vendors, we mainly find the
second approach, li ke IBM products [20], Oracle [21],
and Informix [22]. This is not astonishing as the software
can be more quickly developed when already running
codes could be reused. However the amount of work
needed to achieve parallel functionnaliti es remains
important. For example, the implementation of Volcano
took about five years.

Given the present context of concurrency and users'
demand, the industry cannot afford such long
development delays. In such a scope we integrated our
parallel extension as a whole component of the existing
DBMS. Interfacing is enabled by means of the available
input/output functions of this DBMS. Development costs
are decreased and security functionnaliti es, such as
backup and data recovering, are easily maintained.

7. Conclusion and future work

In this paper we described the architecture of a parallel
extension for a sequential and relational database
management system built on a network of workstations,
oriented toward document databases and working under
relaxed update constraints. As described above,
developing time is drasticall y decreased while using our
method, as we integrate as many existing elements as
possible. We propose an partial data distribution strategy
to adapt distribution to the stations availabilit y and to the
EDBMS level of use. The parallel query optimizer and
the calculators have been developed, and are now tested
and evaluated.

Anyway, many points still remain to be developed.
First, we did not adress so far the server failure problems.
As we use a single existing DBMS, we cannot provide the
security system of a full parallel DBMS. We first propose
a bandwidth and a speed extension, not a security
extension, and second we can trust the robustness of the
existing system (lack of software failures, security
copies...). To ensure security and fastness of reaction in
case of an accident, we plan to study and exploit
duplication possibiliti es. Finall y, we have to study and
integrate document databases specificities into our system,

by looking at the adequation of existing fragmentation
techniques to our needs.

We can conclude by underlining the fact that our
system, while originaly oriented toward overloaded
DBMS, could be used in other contexts. By example, it
could easil y be turned into a federated DBMS: we can
select interesting data from several databases, managed by
several DBMS, get them to our local area network, and
exploit them intensively with no direct connection to their
original site.
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